Shedding light on the state of U.S. water infrastructure

 

From filling up the bathtub to boiling a pot of water to watering the plants, we rely on a ton of water for our daily needs and activities. 

And because water utilities like Aqua work so hard behind the scenes to make it seamless, it can be easy to take Earth’s most essential resource for granted. However, there’s a lot more that goes into our steady and reliable water supply than meets the eye. In fact, sometimes you have to go hundreds of feet underground to see it. 

The intricacies of water infrastructure tend to be out of sight and out of mind for many of us, and we wanted to shed a bit of light on the state of all those systems. So, we talked with Aqua Chairman and CEO Chris Franklin to get the scoop on the state of water infrastructure systems across the United States. 


Aqua Chairman and CEO Chris Franklin (left), employees and board members tour an Aqua facility in Illinois.

You mentioned water infrastructure. What does that look like?

First, let’s go back in time to the beginning of the 20thcentury, which is when the U.S. started laying miles and miles of pipelines deep within the Earth (one million miles, to be exact). These are the pipes that collect water from the ground and surface sources and transport it all the way to your tap. 

The good news is that underground water pipes last up to 100 years, so this infrastructure has provided us with reliable drinking water throughout the past century. The bad news, though, is that a lot of time has passed and those pipes desperately need to be replaced. 

How desperately? 

Well, every four years the American Society of Civil Engineers issues a report card on the current status of water and wastewater infrastructure across the nation. Let’s just say it wasn’t a report card you’d want to bring home to mom and dad. (Spoiler alert: the United States got a D). 

Here’s the thing: we are facing a very serious water quality challenge in the U.S. due to aging water systems, stringent drinking water and wastewater regulations, and budgetary constraints. The time to take action is now.

Tell me more about this dilemma…

According to Franklin, many aging water systems are falling behind because it’s simply too pricey for communities to upgrade or replace all those old, deteriorating pipelines. And we’re talking big bucks: according to the American Water Works Association, we need about $1 trillion over the next 20 years to get water infrastructure to where it should be. 

Most of the country’s water systems are municipally managed, and the truth of the matter is that municipalities having competing priorities for funds to improve and replace the pipes. They have to prioritize water projects with other needs like schools, police and fire departments, roadways, and bridges, which can be rather tricky. However, prolonging investment in water infrastructure improvements can have serious consequences on the safety and quality of our drinking water over time. 

“Although the challenge to the U.S. water infrastructure is less visible than other infrastructure concerns, it’s no less important,” Franklin reminds us.  


Pipes, pipes, and more pipes: Looks like infrastructure! 

What about Aqua’s water? 

“Since Aqua’s only focus is on water, Aqua customers can feel confident that we are actively updating and upgrading infrastructure to meet the needs of their families and communities,” Franklin says. 

This means new pipes, efficient treatments from the source through the plant, and sturdy storage tanks for all. Additionally, Franklin assures us that because investment in water infrastructure is a key pillar of Aqua’s business strategy, Aqua customers can continue to expect clean, safe, and reliable drinking water and wastewater services

Back to the infrastructure dilemma. There has to be a solution, right?

Thankfully, yes, and that’s where Aqua comes into play. Over the past several decades, Aqua has teamed up with and acquired many municipal and private water companies that are struggling to keep up with their water and wastewater systems and injected some much-needed capital into their aging water systems. 

Plus, when Aqua makes these infrastructure improvements, cost-effectiveness is always kept in mind. That means that we take measures like purchasing pipes in bulk and using scientific approaches to tracking main break history, pipe age and more to ensure that rate increases are kept to a minimum for the benefit of our customers.  

 Our board looks forward to any opportunity to learn more about Aqua’s infrastructure systems.

In just 2017 alone, Aqua invested a ton of money (as in more than $450 million) in water and wastewater infrastructure, and since 2007, Aqua has acquired (and drastically improved) 174 water and wastewater systems. Looking forward, you can expect Aqua to play a leading role in fixing up many of these deteriorating water systems. 

“Aqua is committed to renewing and improving water and wastewater infrastructure through thoughtful and continuous capital investment,” Franklin adds.

 The next time you take a sip of water or wash your hands in the sink, try to remember all the hard-working Aqua team members that are dedicated every day to bring you clean and safe water. See you back here next month, where we’ll reveal the best kept secret to safe, reliable drinking water.  

 

Share This Post:

Why Water Mains Break

One of the biggest concerns for water utilities during extremely hot or cold weather is water main breaks. Water mains are expected to last a long time – as long as 100 years in many cases. But with many miles of pipe buried underground, it’s reasonable to expect a particular section of pipe will fail or break at some point. The challenge for water utilities is to work proactively to minimize the number of breaks and to respond effectively when a main does break.

While the oldest water mains were made of wood, by the late 1800s, a variety of iron pipe was being used to construct water distribution systems. Common iron varieties included cast and galvanized in the early part of the 20th Century, with galvanized used primarily for smaller diameter pipe. Cast iron pipe was used until the late 1950s when stronger, more flexible ductile iron pipe became common. Plastic pipe, including Polyvinyl Chloride (PVC) and High Density Polyethylene (HDPE) became common in the 1970s. The primary difference between these two plastic pipes is that PVC is stiffer than HDPE, which is more flexible. Even though pipe is expected to last for decades, that doesn’t mean it won’t break at some point. While it is impossible to predict specific pipe breaks, we know that environmental conditions are a major factor in water main breaks.

In the northern and northeast areas of the country where winters are more extreme, cold soils and cold water combine to add stress to pipes, which can—and often do—result in breaks. Iron, like all metals, contracts as temperatures drop. This problem is more common when the source water is surface water (rivers and lakes). These waters are significantly affected by air temperature and can drop to near freezing in the winter. A temperature difference of just 10 degrees in water or air temperatures can cause pipes to contract or expand. Additional stress inside and outside the pipe occurs as temperatures near the freezing point, making the pipe vulnerable to breakage. Water temperature changes more slowly than air temperature changes so the impact of cold water on pipes can cause breakage to take place as many as a couple days after temperatures freeze. Water systems with groundwater sources (wells) have more stable water temperatures because the water is not affected by air temperatures, and therefore, not as significantly impacted. 

Just as pipes are adversely affected by cold weather conditions, they are also affected by severe heat. In some groundwater systems in the southern and southwestern states, the soils are like sponges and hold lots of water. However, during extended periods of hot temperature when high demands for water increases water withdrawal from the aquifers, the soil becomes very dry. In these conditions, the soil contracts and subsides, pulling away from the pipe and diminishing support for the water main. The absence of support for the main can cause it to break. This particular problem led the City of Houston, Texas to begin to convert its groundwater supply to surface water.

Although older mains are generally more susceptible to breaks, breaks can occur on newer mains. This is most likely the result of improper installation or a manufacturing issue with that particular section of pipe. By examining trends in water main breaks over time, a utility is better able to identify categories of pipe that are more prone to breaks, and thus proactively target that pipe for replacement. Aqua employs such tactics in determining which mains to replace. By the end of 2013, Aqua expects to have spent $170 million of its $325 million capital improvement program on water main replacement and associated work.

Share This Post: